
-R122 257 NUMERICAL SOLUTIONS USING ADJOINT VARIATIONAL i/l
FORMULATION TO STRESS IdAVE..(U) ARMY ARMAMENT RESEARCH
AND DEVELOPMENT COMMAND MATERYLIET NY L..

UNCLASSIFIED C N SHEN ET AL. SEP 82 ARLCB-TR-82828 F/G 12/1, NL

N EEL



-_N

1j.

111.25 1.40Q.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURMA OF STANDARDS-1963-A

Ilk

-- c- - - - - - - - -. . . . . . . . . . -.-- ~ -7..



TECHNICAL REPORT ARLCB-TR-82028

NUMERICAL SOLUTIONS USING ADJOINT VARIATIONAL

FORMULATION TO STRESS WAVE PROBLEMS

C. N. Shen
*J.J. Wu

September 1982

US ARMY ARANTW RESEARCH AND DEVELOPMNT COMMAND p

ANCMS No. 611102H600011

DA Project No. IL161102AH60

PROW No. 1A22SOO41A1A D I

APRVD FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITEDS E T E



U-

U

DISCLAIMER w
The findings in this report are not to be construed as an official

Department of the Xmyi position unless so designated by other *uthor-

ized documents.

The use of trade name(s) and/or manufacture(q) does not consti-

tute an official indorsement or approval.

U

DISPOSITION

Destroy this report when it is no longer needed. Do not return it

to the originator.

op

* :1
;. i2



SECURITY CLASSIFICATION OF THIS PAGE (Men, Daa 5uteord. READ___ _ INSTRUCTIONS__ ___

REPOT DM ENTAION AGEBEFORE COMPLETING FORK
1. REPORT NUM09ER GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ARLCB-TR-82028 2jAl-~ ____________

*4. TITLE (mWd Subtitle) S. TYPE OF REPORT & PERIOD COVERED

NUMERICAL SOLUTIONS USING ADJOINT VARIATIONALFia
FORMULATION TO STRESS WAVE PROBLEMSFna

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(). I. CON-TRACT OR GRANT NUMEER(s)

C. N. Shen and J. J. Wu

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

US Army Armament Research & Development Command ANCMS No. 611 102H600011
Benet Weapons Laboratory, DRDAR-LCB-TL DA Project No. 1L161102AH60
Waterviet, NY 12189 PRON No. 1A22SOO41A1A
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Armament Research & Development Command September 1982
Large Caliber Weapon Systems Laboratory .NUEROPAS

Dover. NJ 07801 22
14. MONITORING AGENCY NAME A ADDRESSQil differnt~ from Cmntrolfiud Office) 1S. SECURITY CLASS. (of Cha. repoft)

UNCLASSIFIED
15a. DECLASSIFICATION/O'OWNGRADINGI

SCHEDLE K

16. DISTRIBUTION STATEMENT (of thAs eot)

Approved for public release; distribution unlimited.

17. DISTROBUTION STATEMENT (of Ma bstract entered In. Black 3,It different from Report)

1S. SUIPLEMR1TARY NOTES

Presented at 1982 Army Numerical Analysis and Computers Conference, US Army
Engineers Waterways Experiment Station, Vicksburg, MS, 3-4 February 1982.
Published in proceedings of the conference.

1S. KEZY WORDS (Cew an reviee @fd. HI nooee ad idmtlb by block amber)

Adjoint Variational Principle Finite Elements
Initial and Boundary Value Problems Assembly of Matrices
Wave Equation Matrix Row Elimination
Spline Function

21 ASSYRACr (OmP0 M Mearem8 N 110000 Mduit b11P blak umber)

This report deals with the numerical implementation of an involved analysis in
conjunction with cubic Hermit. polynomials as the approximate functions. The
specific example used for numerical results is the longitudinal stress wave of
a uniform bar.

(CONT'D ON REVERSE) 7

D I im 79 wn MOTONOFI NOV a S OSLETE UNCLASSIFIED
SCumrv CLASSIFICATION OF THIS PA6E (When Data Entred)



L.

SECURITY CLASSIFICATION OF THIS PAGIE(has D"a mt#E*) r

20. ABSTRACT (CON D)

First, the adjoint principle associated with this problem is stated. It is
followed by the discretized counterparts in spatial and temporal dimensions. V
The procedures involving the assemblage of the "mass" and "stiffness"
matrices in the two dimensions are described. Due to the null variations of
some adjoint variables, certain rows of the matrices are eliminated.
Because certain variables are known at the boundaries, the unknown variables
for the next interval of time can be computed by inversion of a band matrix
in terms of their present values. "r

I

.7.

rI

SR I

F . .



TABLE OF CONTENTS
Page

INTRODUCTION 1

INTEGRAL OF BILINEAR EXPRESSION 2

END CONDITIONS FOR THE ADJOINT SYSTEMS 3

FIRST VARIATION 4

DISCUSSION OF THE VARIATIONAL EQUATION 6

TRANSFORMATION OF COORDINATES 7

SPLINE FUNCTION 8

GRID SYSTEMS FOR FINITE ELEMENT 9

ASSEMBLY OF MATRICES , 1

FURTHER DELETIONS AND KNOWNS 13

CONCLUSIONS 13

REFERENCES 15

LIST OF ILLUSTRATIONS

1. Vectors in a Finite Element. 16

2. Grid System by Assembly of Finite Elements. 17

3. Matrix Assembly Global Form. 18

4. R6w Deletion and Knowns. 19

5. Zero Variation of Adjoint Variables. 20

Aaoession For
6. Variables, Known or Unknown. 21

NTIS GRA&I
DTIC TAB
Unannounced 7-

.Justi.ical. 4,.

- ~~COP1
V-*

It4SPEC11D0t z tIo~Di stribut2Lion/':""

Availability Codes

Avail and/orDist Special,'6

fl--I

:.,,.... ..,....,..,..... ........ ........ -... .. . +: . . _ . :. . - . . . ..



INTRODUCTION

A well known advantage of variational solution formulation to

boundary value problems is that the differentiability requirements of the

approximate solutions can be relaxed. For initial value problems, however,

* this advantage is somewhat diminished by the complication due to the

appearance of the farther end condition. This complication can be eliminated

by the use of an adjoint variational principle as we have demonstrated for a

simple initial value problem in a previous paper.1  The more involved anal-

ysis for the mixed initial-boundary value problem has also been worked out.

The purpose of this report is to employ the adjoint variational principle

in the form of finite element formulation for solving the stress wave

problems. The hyperbolic partial differential equation governing the motion

is second order both in spatial and time domains.

Ly(x,t) + Q(x,t) - 0 (1)

where
Ly= (ayt)t + (tyx)x (2)

We seek explicitly the numerical transient solutions of y, Yt, yx and Yxt for

assigned boundary and initial conditions. The term yx will give the stress

wave in a longitudinal bar. The study is the extension of previous work on

initial and boundary value problems.
1

1Shen, C. N., "Method of Solution For Variational Principle Using Bicubic
Hermite Polynomial," presented at the 27th Conference of Army
Hathematicians, West Point, NY, June 1981.



INTEGRAL OF BILINEAR EXPRESSION

The integral of a bilinear expression for a two-dimensional problem

having second order partial derivatives in both space and time can be written

as

xb tb -t I [y(x,t),y(x~t)ldtdx (3) :

Xo to

where I(y,y] is a given bilinear expression in the form "

a[y,y) - aytyt + LYxYx (4)

The quantity y is the adjoint of y and the subscripts t and x indicate the

partial derivatives of the functions y and y.

Two different forms of integrals and end conditions can be obtained from

Eq. (4). The first form is obtained by integrating by parts on the adjoint

variable.
Xb tb Xb -tb tb Xb
f yLydtdx + f aytyl dx + f yxYl dt (5)
Xo to Xo to to Xo

where Ly is given in Eq. (2).

In addition, we can perform integration on the original variable to give

_ xb ftb -t Xb - tb tb xb
IyLydtdx + f yty dx + f £yxyj dt (6)

Xo to 10 to to Xo

where

Ly - (ayt)t + (Lyx)x (7)

In a previous paper1 we show that the bilinear concomitant D has to be

identically zero, i.e.,

IShen, C. N., "Method of Solution For Variational Principle Using Bicubic
lermite Polynomial," presented at the 27th Conference of Army
Mathematicians, West Point, NY, June 1981.
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Xb tb ~ Xb tb -

D f f yLydtdx -,f f yLydtdx (8)
2Co toX0 to

By equating Eqs. (5) arnd (6) and solving for D in Eq. (8), we are converting

the double integral into two single integrals in terms of the initial and

boundary conditions.

We can express the quantity D as the sum of two parts for end conditions

as D1 and D2. Thus one defines

The terms in DI involve the initial conditions of y and y as(92

b -it tb
DI f {yy -L ctty dx

XO to to

-4 -f ((b(ytbyb-ytbyb) - Oo(YtoYo-Ytoyo))dx (10)

.2, The terms in D2 involve the boundary conditionsl of y and y as

tb - Kb b
D2- I Lyxyl - yxyj }dt

to 10 10

tb----
-f (lb(yxbyb-yxbYb) - tO(yxoyo-yxoyo))dt (1

In order that D 0 in Eq. (9) it is sufficient that

DI=0 (12a)
and

0 (12b)

END CONDITIONS FOR THE ADJOINT SYSTEM

In orukr to satisfy the two requirements in Eq. (12), we separate them in

two parts. Let us consider first the time domain and assume that the adjoint

variables are assigned an

3
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YbinYo *Yo Yb

7tb -'b %oYto ,Yto -o %~Ytb

The above adjoint initial conditions satisfy the requirement that D,

Eq. (10). Now we turn to the spatial domain and assume that the :1,

* variables are

Yb 0Yb Yoinayo

Yxb - 0Yxb Yxo - Yxo

The above adjoint boundary conditions satisfy the requirement that

* Eq. (11), with 0 as a constant.

By giving the appropriate values of these adjoint variables in

* the original variables, one may find that the requirement D E0 can

satisfied. This leads to the result' previously found as

- tb xb - tb xb

Jjy,yJ f f Qydtdx + ft f y(Q- dtdx -0

FIRST VARIATION

By taking variation on Eq. (18) we have

6J - .J[6y] + 6J[6y]

tb fXb -- tb xb-
*-ff 6y(Ly)dtdx + f f y(L6y)dtdx -0

to X0 to X0

IShen, C. N., "Method of Solution For Variational Principle Using Bicturb
Hermite Polynomial," presented at the 2 7th Conference of Army
Mathematicians, West Point, NY, June 1981.
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where
- tb xb-

8J8y -f f 6y(Ly+Q)dtdx (20)
-~ to X0

and
8.1tb r-b

a bay- f f 6y(Ly+Q)dtdx (21)
to Xo

Since D S 0 in Eq. (8) the variation 6D should be zero

6D - 6D[6y] + 6D[6y] - 0 (22)

Since the variations 6y and 6y are independent, then

tb Xb- tb b -- "

S y(Ly)dtdx 6y(Ly)dtdx - 0 (23)
to Xo to Xo

which is the same as the last two terms in Eq. (19) which vanish. Thus

6J - 6J[6y] + 6J[6yJ - 0 (24)

Since the variations 6y and 6y are independent

- tbxb
8J[61 - f If 6y(Ly+Q)dtdx = 0 (25)

to X0

where Ly is given in Eq. (2) and contains higher derivatives than the first

partials in y. It is intended to include only lower order partial

differentiation in y. This can be achieved by considering the variations of

the bilinear expression I given by Eqs. (3) and (4) as

tb Xb
61[6y] f f b [ayt6yt + tyx6yxydtdx (26)

to Xo

- A different form of the above variation can be obtained from Eq. (5) as

- b tb - Kb - tb tb - Kb
-yLydtdx + f 6yayt dx + f ytyxi dt (27)

. to To to to 10

5r
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Equating Eqs. (26) and (27), solving fo the term containing integral for yLy

and substituting into Eq. (25) we have

- xb - tb tb -xb
6J[6y] - f aytsyl dx + J' Xyxy dt

Xo to to Xo

Xb itb -Xb ftb --

+ f f 6yQdtdx - f f fayt6yt + £yx6yxldtdx = 0 (28)
x o  to X0  to

This is the key equation which uses variational principle in sclving a mixed

initial and boundary value problem for a wave equation.

DISCUSSION OF THE VARIATIONAL EQUATION

Let us discuss the various terms in Eq. (28), the variational formulation

of the wave equation, into three parts as follows.

(1) The initial conditions of the original variables are given and

variations of the adjoints at the far end are zero. The first term in Eq.

(28) contains the product of yt6 Y evaluated at the initial condition Yto 6Yo

and at the final condition YtbSYb. Since the value of Yb is known by Eqs.

(13) and (16), 6yb - 0. That is, the variations of the adjolnt variable at

the far end are zero.

(2) The boundary conditions of the original variables and variation of

the adjoints can be determined. The second term in Eq. (28) is the boundary

term involving the variation 6y and the variable Yx. For a longitudinal or a

torsional bar the end conditions are

from Eq. (16) for the fixed end

y o y- 0 6y- 0 (29)

,6 6



from Eq. (17) for the free end

YX 0 Yx 0  6yx iO (30)

The variations in the adjoint variables shown in the last column coincide

with the sae end conditions in the original variables given in the first

column, whether they are on the left or the right boundary.

(3) Interior Region - The last two terms in Eq. (28) give the interior

region where the forcing function Q, the adjoint variations 6y, 6 yt, and 6yx

and the variables yt, and yx are shown. No second order partial of y with

respect to x is present. Thus the variables that are needed for the

computation are y, yt, and yx. This requires a c' continuity in both spatial

and time domain.

TRANSFORMATION OF COORDINATES

The integral signs in Eq. (28) can be converted into summation signs if

discrete intervals for integration are used. We may take some scale factors

to nondimensionalize the problem by giving

to - 0 , tb - 1 0 4 t 4 1 (31)

xo -0 , x 1 0 4 x < 1 (32)

Moreover, Eq. (28) can be discretized by letting

- t-i+l 0 4 E 4 1 1 1,2,..o,H (33)

- K-J+l 0 4 n 4 1 i - 1,2,...,K (34)

where H and K are number of intervals for t and x respectively. Thus the

partial derivatives are:

7
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ay ay
at

By ay
Yx Ky Y) (36)ax a r

Use of Eqs. (28), (31) through (36) then leads to

0 -6J(6yj

KH 1 tb
f - 1'cy (idi)6y(i,i )dnil

i-I K 0 to

H K I Xb
+ - f yn(idi)6y(i,i )dj
1.H 0 X

K H 1  j -
+ f -- f Qy(idi)ddi

j.1 ji HK 0 0

K 0H H 0

(37)

SPLINE FUNCTION

We may express the variables y(i) and 6y(i#J) in Eq. (37) in terms of

the (1x16) spline function aT(F&,n) and the (16x1) node point function Y(idj)

as follows.

-~d( n aT(FE,n)y(i,i) (38)

where

4aT(F.,n) -{[al(&,nOJT [a2( ,n)IT [a3( ,n))IT [a'(C,fl)1T} (39)

and

6yi~)~,~)-aTt,fl)6Y(i,i) (40)

8
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A typical term for a product can be written as

ay(i~j)y(ij) -[6y(i~j)JTat&,n)aT( ,rn)y(i,i) (41)

Thus Eq. (37) be omes
- K - T

6J(6y) - 6Y(tb,i)J PO (tb)Y(tbui)

-(6Y(t oJ)] Jt~t~~o

J-1

+ H 6y(i,xb)] POnI(xb)y(iXb)

H T
- 6y(i.,xo) I Po,,(xo)y(ixo)
ini

K H - T
+ [(I,i)j q(i,J)
J-1 i-i

K H T
- [6y(bi)J P(i,i)y(i"i) 0 (42)
J-1 i-i

* where the coefficient P contains integrals involving the spline functions

a(F ,ii) and its partial derivatives as given in a previous paper.'

GRID SYSTEMS FOR FINITE ELEMENT

We take a finite element represented by the (16x1) vector Y(i,J) which

*has a grid of four (4x1) vectors Yl(i,-J) through Y4(i,J), thus

y(ij) - (y 1(i.J)JT [Y2(iJ)]IT [Y3(i"i)IT [y4(i~j)JT) (43)

1Shen, C. N., "Method of Solution For Variational Principle Using Bicubic
Hermite Polynomial," presented at the 27th Conference of Army
Mathematicians, West Point, NY, June 1981.
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Each of the (4x1) vectors has four components, consisting of the function, its

- first partials in both -directions, and its mixed partial, as shown in Figure v
These vectors are,

Yj~y 3(ijj YP

y1(icj) - yn( i'nj+i)

y2(~j - y~(i+i1i) ij)- y(Ci+1 'nj+i)

- Yn(ti+10,4) Yn(ti+1'flj+1)

*Y~n(FCi+i,11j) Y~n(Ei+i1flj+i) (44)

We use the vertical direction for the temporal domain. If we increase the row

*index from i to i+1, then the grid point shifts down by one step and V' e

- following holds

Y1 (i+1,J) -Y 2(ii). Y3(i+1J) Y4(i"J) (45)

*If we increase the column index from j to J+1, then the grid point shifts to

the right by one step and one obtains

y1(i"J+l) -Y 3(i-J) Y2(i"J+1) -Y 4(iJ) (46)

- Figure 2 shows the relationship of the grid system by assembly of finite

1 elements in the horizontal direction, which is in the spatial domain.

10 -
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ASSEMBELY OF MATRICES

In order to solve Eq. (42) by finite element method, assembly of matrices

f rom local form into global form is necessary. For instance, the last term of

Eq. (42) is taken as -fiJp(6y). Then

- K H
6jp(8y) I I [6y(i,j)jTp(i,j)y(ij) (47)

J-1 i-i

Since w know that the interral in time can be made as small as possible, with

H- 1, wehave

- K -

6Jp(6y) - ) [6y(l1i)]Tp(l,j)y(l,i)
J-1

-K

{ [6y1(l,i)JT[6y2(1,i)JT[6y3(1,i)JT(6y4(1,i)ITI pl1 P12 P13 P14 yI(,I )

J-1 P21 P22 P23 P24 Y2(I1j) -

P31 P32 P33 P34 Y3(l1i)

P41 P42 P43 P44 Y4(l1j)

(48)

.'It is noted from Figure 2 that the variables can be indexed ast

Y3(IJ) - YI(l"J+1) - Y2j+j1 (49)

Y4(l"J) - Y2(1,J+1) - y2j+2 (50)

For j -0, Y1(l"l) -y 1  ,Y 2(1") - 2 (51)

*For 1-k-5
-~~ 3(1,5) -yll y4(1.5) -(2

12 ]52
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Also from Figure 2, the adjoint variations are

-3,J) 6YI(IJ + 1 ) - 6Y2j+I (53)

6Y4 (,iJ) - 6y2(IsJ+l) - 6Y2J+1 (54)

For j -.0, --
6y1 (1,J) - 6Y1  , 6Y2(

101) - 6Y2  (55)

Fo rJ -k 5,--- FY3(rjs) - 6Yl , 6Y4 (
1'5) - 6Y12  (56)

Now the local matrices in Eq. (48) can be assembled into a global band matrix

shown in Figure 3. Those elements not explicitly written are zeroes in Figure

3.

Since the adjoint variable yb at the far end is assigned in terms of the

known initial value yo, the variation is

SYb 0 (57)

From Figure 2 we have

6 2 - 6Y4  6 8Y 6  6Y8 - 6Y10  6Y1 2  6yEVEN 0 (58)

This is equivalent to deleting the even rows of the matrix in Figure 3. The

deletion is marked in Figure 4. The number of relationships is reduced to

half of the original dimension.

The variables YODD in Figure 2 are the initial values of the problem

which are supposed to be given. Thus, YI, Y3, Y5, Y7, Y9, Y11 are all knowns.

The coefficients related to these knowns should eventually be shifted to the

right side of the equation.

12
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FURTHER DELETIONS AND KNOWNS

Suppose we have a bar with the fixed end at the left. Then from Eq. (29)

one obtains

Yo 0 (59)
and

6y o  0 (60)

The above equations translate to be

y12,1) 0 (known) (61)

and
6( 191 ) - 0 (deletion) (62)

On the other hand we have a free end at the right. Then Eq. (30) gives

Yxb " 0 (63)
and

6Yxb 0 (64)

The above equations yield

(2. 6 ) - 0 (known) (65)

and
6yn(l, 6) - 0 (deletion) (66)

Figure 5 gives the variation of adjoint variables. It shows two extra

zero variations at the first row, 6y(191) at the left and 6yn(
1' 6) at the

right. We have also all zero variations on the second row. Figure 6 shows

the known and unknown variables. There are two extra known variables in the

second row due to boundary conditions, y(2,l) at the left and yn( 2 ,6) at the

right. The first row gives all known initial conditions.

CONCLUSIONS

Direct computation of stress, i.e., numerical solution for first spatial

derivatives of the displacement can be obtained directly. This is Important

if the problem has noisy components in the solution of the displacement.

13



Computation can be made successively, i.e., the final values of the solution

at the first stage in time can be used as the initial values of the second

period in time. The variations of the adjoint variables at the far end in

time for an initial-boundary value problem are zeroes. Deletion of many rows

in the assembled matrix is possible. The assembled matrix for computing is

reduced to less than half size in linear dimension, from (2nx2n) to (nxn).

Hence, a bigger number of intervals in the spatial dimension can be handled. *'

The reduced matrix is a band matrix which makes the storage requirement for

computation much easier.

14 :1
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